8123 measured reflections

 $R_{\rm int} = 0.045$

3801 independent reflections

3493 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloro-12-phenyl-6,7,8,9,10,11-hexahydrocycloocta[b]quinoline

Ayoob Bazgir* and Ali Mohammad Astaraki

Department of Chemistry, Islamic Azad University, Dorood Branch, Dorood 688173551, Iran Correspondence e-mail: a_bazgir@yahoo.com

Received 4 April 2008; accepted 5 April 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.126; data-to-parameter ratio = 18.3.

In the molecule of the title compound, C₂₁H₂₀ClN, the quinoline group is nearly planar and is oriented at a dihedral angle of $77.21(3)^{\circ}$ with respect to the phenyl ring. The conformation of the cyclooctane ring is twist-boat. In the crystal structure, there are some weak π - π interactions [centroid-to-centroid distances of 3.7414 (11) and 3.8633 (12) Å] between the rings of the quinoline groups.

Related literature

For general background, see: Kalluraya & Sreenivasa (1998); Doube et al. (1998); Maguire et al. (1994). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

2	
C ₂₁ H ₂₀ ClN	$\gamma = 61.829 \ (15)^{\circ}$
$M_r = 321.83$	V = 823.4 (3) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.837 (2) Å	Mo $K\alpha$ radiation
b = 9.980 (2) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 10.175 (2) Å	T = 298 (2) K
$\alpha = 74.600 \ (17)^{\circ}$	$0.5 \times 0.5 \times 0.25$ mm
$\beta = 70.575 \ (16)^{\circ}$	

Data collection

```
Stoe IPDSII diffractometer
Absorption correction: numerical:
  shape of crystal determined opti-
  cally (X-RED and X-SHAPE;
  Stoe & Cie, 2002)
  T_{\rm min} = 0.889, T_{\rm max} = 0.949
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	208 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
3801 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The author is grateful to the Islamic Azad University, Dorood Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2449).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255-1260.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.
- Maguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129-2137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2008). E64, o831 [doi:10.1107/S1600536808009239]

2-Chloro-12-phenyl-6,7,8,9,10,11-hexahydrocycloocta[b]quinoline

A. Bazgir and A. M. Astaraki

Comment

Quinoline nucleus is a backbone of many natural products and pharmacologically significant compounds displaying a broad range of biological activities and many functionalized quinolines are widely used as antimalarial, antiasthmatic, antiinflamatory, antibacterial, antihypertensive and tyrosine kinase PDGF-RTK inhibiting agents (Kalluraya & Sreenivasa, 1998; Doube *et al.*, 1998; Maguire *et al.*, 1994). We report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C1/C6-C8/C15) and C (C16-C21) are, of course, planar, and they are oriented at dihedral angles of A/B = 0.88 (3)°, A/C = 76.76 (4)° and B/C = 77.64 (3)°. So, rings A and B are also nearly coplanar. The dihedral angle between the coplanar ring system and ring C is 77.21 (3)°.

In the crystal structure, the weak π - π interactions between the two adjacent A rings and A and B rings, with centroidcentroid distances of 3.7414 (11) Å and 3.8633 (12) Å, may be effective in the stabilization of the structure (Fig. 2).

Experimental

A mixture of 2-amino-5-chlorophenyl(phenyl)methanone (0.23 g, 1 mmol), cyclooctanone (1.26 g, 1 mmol) and Dewax-50 W ion exchange resin (0.3 g) was heated at 353 K. After 2 h the reaction mixture was washed with ethyl acetate (10 ml). Evaporation of the solvent followed by recrystallization from ethanol to afford the pure product (yield; 0.278 g, 75%).

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of (I).

2-Chloro-12-phenyl-6,7,8,9,10,11-hexahydrocycloocta[b]quinoline

Crystal data	
$C_{21}H_{20}Cl_1N_1$	Z = 2
$M_r = 321.83$	$F_{000} = 340$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.298 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.837 (2) Å	Cell parameters from 2086 reflections
b = 9.980 (2) Å	$\theta = 2.4 - 28.0^{\circ}$
c = 10.175 (2) Å	$\mu = 0.23 \text{ mm}^{-1}$
$\alpha = 74.600 \ (17)^{\circ}$	T = 298 (2) K
$\beta = 70.575 \ (16)^{\circ}$	Block, colorless
$\gamma = 61.829 \ (15)^{\circ}$	$0.5\times0.5\times0.25~mm$
V = 823.4 (3) Å ³	

Data collection

Stoe IPDSII diffractometer	$R_{\rm int} = 0.045$
rotation method scans	$\theta_{max} = 28.0^{\circ}$
Absorption correction: numerical shape of crystal determined optically [PROGRAM NAME? reference?	$\theta_{\min} = 2.4^{\circ}$
$T_{\min} = 0.889, T_{\max} = 0.949$	$h = -12 \rightarrow 11$
8123 measured reflections	$k = -13 \rightarrow 10$
3801 independent reflections	$l = -13 \rightarrow 13$
3493 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0607P)^2 + 0.1883P]$ where $P = (F_0^2 + 2F_c^2)/3$		
$R[F^2 > 2\sigma(F^2)] = 0.046$	$(\Delta/\sigma)_{\text{max}} = 0.006$		
$wR(F^2) = 0.126$	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$		
<i>S</i> = 1.04	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$		
3801 reflections	Extinction correction: none		
208 parameters			

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.59962 (5)	0.96565 (4)	0.17975 (4)	0.06276 (16)
N1	0.51106 (12)	0.54812 (13)	0.69575 (11)	0.0391 (2)
C1	0.53821 (13)	0.64045 (14)	0.57445 (12)	0.0354 (2)
C2	0.42557 (15)	0.79582 (15)	0.56208 (15)	0.0440 (3)
H2	0.3377	0.8313	0.6366	0.053*
C3	0.44417 (16)	0.89348 (15)	0.44312 (16)	0.0462 (3)
Н3	0.3693	0.9949	0.4354	0.055*
C4	0.57823 (15)	0.83909 (14)	0.33177 (14)	0.0418 (3)
C5	0.69071 (14)	0.69125 (14)	0.33901 (13)	0.0392 (3)
Н5	0.7787	0.659	0.2639	0.047*
C6	0.67271 (13)	0.58733 (13)	0.46148 (12)	0.0333 (2)
C7	0.78256 (13)	0.43037 (13)	0.47776 (12)	0.0339 (2)
C8	0.75403 (14)	0.33702 (14)	0.60027 (12)	0.0357 (2)
C9	0.86347 (17)	0.16885 (15)	0.62161 (14)	0.0456 (3)
H9A	0.9111	0.1313	0.531	0.055*
H9B	0.8003	0.1139	0.6796	0.055*
C10	0.99695 (16)	0.13077 (18)	0.69016 (16)	0.0542 (4)
H10A	1.0455	0.0207	0.7167	0.065*
H10B	1.0777	0.1584	0.62	0.065*
C11	0.94953 (18)	0.2078 (2)	0.81886 (16)	0.0549 (4)
H11A	0.9085	0.3178	0.7909	0.066*
H11B	1.0445	0.1765	0.8501	0.066*
C12	0.82614 (19)	0.17430 (19)	0.94328 (16)	0.0553 (4)
H12A	0.8568	0.1606	1.0289	0.066*
H12B	0.8289	0.078	0.936	0.066*
C13	0.65535 (18)	0.29655 (18)	0.95684 (14)	0.0510(3)
H13A	0.6551	0.3948	0.9529	0.061*
H13B	0.5927	0.2748	1.0491	0.061*
C14	0.57222 (16)	0.31198 (17)	0.84728 (14)	0.0470 (3)
H14A	0.5988	0.2101	0.8307	0.056*
H14B	0.4582	0.3605	0.8855	0.056*
C15	0.61401 (13)	0.40276 (14)	0.70838 (12)	0.0370 (3)
C16	0.92569 (13)	0.37293 (13)	0.35925 (12)	0.0359 (2)
C17	0.91195 (17)	0.34403 (19)	0.23968 (14)	0.0498 (3)
H17	0.8139	0.3575	0.2335	0.06*
C18	1.0449 (2)	0.2949 (2)	0.12879 (17)	0.0655 (5)
H18	1.0355	0.2746	0.0489	0.079*
C19	1.1906 (2)	0.2758 (2)	0.13600 (18)	0.0631 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H19	1.2792	0.2421	0.0617	0.076*
C20	1.20421 (17)	0.30678 (19)	0.25315 (18)	0.0564 (4)
H20	1.302	0.2955	0.2578	0.068*
C21	1.07270 (15)	0.35483 (16)	0.36480 (15)	0.0453 (3)
H21	1.083	0.3752	0.4442	0.054*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0600 (3)	0.0434 (2)	0.0641 (3)	-0.01716 (17)	-0.01096 (18)	0.01044 (16)
N1	0.0288 (5)	0.0426 (5)	0.0396 (5)	-0.0107 (4)	-0.0059 (4)	-0.0076 (4)
C1	0.0271 (5)	0.0369 (6)	0.0400 (6)	-0.0093 (4)	-0.0084 (4)	-0.0094 (4)
C2	0.0304 (6)	0.0392 (6)	0.0524 (7)	-0.0063 (5)	-0.0053 (5)	-0.0130 (5)
C3	0.0367 (6)	0.0334 (6)	0.0607 (8)	-0.0071 (5)	-0.0131 (6)	-0.0078 (5)
C4	0.0396 (6)	0.0357 (6)	0.0486 (7)	-0.0157 (5)	-0.0132 (5)	-0.0006 (5)
C5	0.0327 (6)	0.0376 (6)	0.0426 (6)	-0.0123 (5)	-0.0068 (5)	-0.0059 (5)
C6	0.0268 (5)	0.0346 (5)	0.0377 (5)	-0.0102 (4)	-0.0084 (4)	-0.0083 (4)
C7	0.0277 (5)	0.0358 (6)	0.0366 (5)	-0.0095 (4)	-0.0080 (4)	-0.0096 (4)
C8	0.0318 (5)	0.0346 (6)	0.0391 (6)	-0.0103 (4)	-0.0104 (4)	-0.0074 (4)
C9	0.0475 (7)	0.0333 (6)	0.0455 (7)	-0.0086 (5)	-0.0103 (5)	-0.0065 (5)
C10	0.0372 (7)	0.0478 (7)	0.0542 (8)	-0.0030 (6)	-0.0116 (6)	0.0008 (6)
C11	0.0457 (7)	0.0622 (9)	0.0552 (8)	-0.0218 (7)	-0.0207 (6)	0.0034 (7)
C12	0.0548 (8)	0.0573 (9)	0.0470 (7)	-0.0206 (7)	-0.0186 (6)	0.0057 (6)
C13	0.0531 (8)	0.0526 (8)	0.0366 (6)	-0.0188 (6)	-0.0069 (5)	-0.0013 (5)
C14	0.0372 (6)	0.0509 (7)	0.0463 (7)	-0.0197 (6)	-0.0053 (5)	-0.0001 (6)
C15	0.0301 (5)	0.0413 (6)	0.0387 (6)	-0.0142 (5)	-0.0091 (4)	-0.0050 (5)
C16	0.0308 (5)	0.0325 (5)	0.0378 (6)	-0.0083 (4)	-0.0052 (4)	-0.0085 (4)
C17	0.0420 (7)	0.0655 (9)	0.0450 (7)	-0.0231 (6)	-0.0054 (5)	-0.0178 (6)
C18	0.0635 (10)	0.0914 (13)	0.0468 (8)	-0.0362 (9)	0.0029 (7)	-0.0309 (8)
C19	0.0472 (8)	0.0739 (11)	0.0574 (9)	-0.0243 (8)	0.0123 (7)	-0.0265 (8)
C20	0.0323 (6)	0.0617 (9)	0.0695 (9)	-0.0167 (6)	-0.0022 (6)	-0.0190 (7)
C21	0.0348 (6)	0.0471 (7)	0.0513 (7)	-0.0118 (5)	-0.0087 (5)	-0.0152 (6)

Geometric parameters (Å, °)

1.3612 (16)	C11—H11A	0.97
1.4153 (16)	C11—H11B	0.97
1.4194 (17)	C12—C13	1.526 (2)
1.358 (2)	C12—H12A	0.97
0.93	C12—H12B	0.97
1.4051 (19)	C13—C14	1.527 (2)
0.93	C13—H13A	0.97
1.3644 (18)	C13—H13B	0.97
1.7405 (14)	C14—C15	1.5075 (18)
1.4143 (17)	C14—H14A	0.97
0.93	C14—H14B	0.97
1.4255 (16)	C15—N1	1.3217 (17)
1.3777 (17)	C16—C17	1.3836 (18)
1.4969 (16)	C16—C21	1.3890 (18)
	1.3612 (16) 1.4153 (16) 1.4194 (17) 1.358 (2) 0.93 1.4051 (19) 0.93 1.3644 (18) 1.7405 (14) 1.4143 (17) 0.93 1.4255 (16) 1.3777 (17) 1.4969 (16)	1.3612 (16)C11—H11A1.4153 (16)C11—H11B1.4194 (17)C12—C131.358 (2)C12—H12A0.93C12—H12B1.4051 (19)C13—C140.93C13—H13A1.3644 (18)C13—H13B1.7405 (14)C14—C151.4143 (17)C14—H14A0.93C14—H14B1.4255 (16)C15—N11.3777 (17)C16—C171.4969 (16)C16—C21

C8—C15	1.4353 (17)	C17—C18	1.390 (2)
C8—C9	1.5096 (17)	С17—Н17	0.93
C9—C10	1.534 (2)	C18—C19	1.378 (3)
С9—Н9А	0.97	C18—H18	0.93
С9—Н9В	0.97	C19—C20	1.370 (2)
C10—C11	1.521 (2)	С19—Н19	0.93
C10—H10A	0.97	C20—C21	1.3857 (19)
C10—H10B	0.97	С20—Н20	0.93
C11—C12	1.524 (2)	C21—H21	0.93
N1—C1—C6	122.66 (11)	H11A—C11—H11B	107.4
N1—C1—C2	117.98 (11)	C11—C12—C13	115.65 (13)
C6—C1—C2	119.36 (11)	C11—C12—H12A	108.4
C3—C2—C1	121.00 (12)	C13—C12—H12A	108.4
С3—С2—Н2	119.5	C11—C12—H12B	108.4
C1—C2—H2	119.5	C13—C12—H12B	108.4
C2—C3—C4	119.00 (12)	H12A—C12—H12B	107.4
С2—С3—Н3	120.5	C12—C13—C14	116.62 (13)
С4—С3—Н3	120.5	С12—С13—Н13А	108.1
C5—C4—C3	122.25 (12)	C14—C13—H13A	108.1
C5—C4—Cl1	119.37 (10)	C12—C13—H13B	108.1
C3—C4—Cl1	118.37 (10)	C14—C13—H13B	108.1
C4—C5—C6	119.61 (11)	H13A—C13—H13B	107.3
С4—С5—Н5	120.2	C15—C14—C13	114.79 (11)
С6—С5—Н5	120.2	C15—C14—H14A	108.6
C5—C6—C1	118.77 (11)	C13—C14—H14A	108.6
C5—C6—C7	123.61 (10)	C15—C14—H14B	108.6
C1—C6—C7	117.63 (11)	C13—C14—H14B	108.6
C8—C7—C6	119.53 (10)	H14A—C14—H14B	107.5
C8—C7—C16	122.32 (10)	N1-C15-C8	123.17 (11)
C6—C7—C16	118.15 (10)	N1-C15-C14	114.02 (11)
C7—C8—C15	118.28 (11)	C8—C15—C14	122.80 (11)
С7—С8—С9	121.86 (11)	C17—C16—C21	118.98 (11)
C15—C8—C9	119.85 (11)	C17—C16—C7	120.43 (11)
C8—C9—C10	115.07 (12)	C21—C16—C7	120.52 (11)
С8—С9—Н9А	108.5	C16—C17—C18	119.87 (13)
С10—С9—Н9А	108.5	С16—С17—Н17	120.1
С8—С9—Н9В	108.5	C18—C17—H17	120.1
С10—С9—Н9В	108.5	C19—C18—C17	120.65 (15)
Н9А—С9—Н9В	107.5	C19—C18—H18	119.7
C11—C10—C9	116.56 (12)	C17C18H18	119.7
C11—C10—H10A	108.2	C20—C19—C18	119.70 (13)
C9—C10—H10A	108.2	C20—C19—H19	120.2
C11—C10—H10B	108.2	C18—C19—H19	120.1
C9—C10—H10B	108.2	C19—C20—C21	120.16 (14)
H10A—C10—H10B	107.3	С19—С20—Н20	119.9
C10—C11—C12	116.04 (14)	С21—С20—Н20	119.9
C10—C11—H11A	108.3	C20—C21—C16	120.63 (13)
C12—C11—H11A	108.3	C20—C21—H21	119.7
C10-C11-H11B	108.3	C16—C21—H21	119.7

supplementary materials

C12—C11—H11B	108.3	C15—N1—C1	118.73 (10)
N1—C1—C2—C3	-178.99 (12)	C10-C11-C12-C13	-98.63 (17)
C6—C1—C2—C3	0.70 (19)	C11—C12—C13—C14	70.55 (19)
C1—C2—C3—C4	-0.6 (2)	C12-C13-C14-C15	-80.42 (17)
C2—C3—C4—C5	0.0 (2)	C7—C8—C15—N1	0.29 (18)
C2—C3—C4—Cl1	179.69 (11)	C9—C8—C15—N1	-178.45 (11)
C3—C4—C5—C6	0.7 (2)	C7—C8—C15—C14	-179.14 (11)
Cl1—C4—C5—C6	-179.07 (9)	C9—C8—C15—C14	2.13 (18)
C4—C5—C6—C1	-0.59 (18)	C13-C14-C15-N1	-96.60 (14)
C4—C5—C6—C7	178.98 (11)	C13—C14—C15—C8	82.88 (16)
N1—C1—C6—C5	179.60 (10)	C8—C7—C16—C17	103.88 (15)
C2—C1—C6—C5	-0.07 (17)	C6—C7—C16—C17	-75.90 (16)
N1-C1-C6-C7	0.00 (17)	C8—C7—C16—C21	-79.21 (16)
C2—C1—C6—C7	-179.67 (11)	C6—C7—C16—C21	101.02 (14)
C5—C6—C7—C8	-179.10 (11)	C21—C16—C17—C18	1.2 (2)
C1—C6—C7—C8	0.48 (16)	C7—C16—C17—C18	178.19 (15)
C5—C6—C7—C16	0.69 (17)	C16-C17-C18-C19	-0.6 (3)
C1—C6—C7—C16	-179.74 (10)	C17—C18—C19—C20	-0.5 (3)
C6—C7—C8—C15	-0.62 (17)	C18—C19—C20—C21	1.0 (3)
C16—C7—C8—C15	179.61 (10)	C19—C20—C21—C16	-0.3 (2)
C6—C7—C8—C9	178.09 (11)	C17—C16—C21—C20	-0.8 (2)
C16—C7—C8—C9	-1.68 (18)	C7—C16—C21—C20	-177.74 (13)
C7—C8—C9—C10	91.27 (15)	C8—C15—N1—C1	0.19 (18)
C15—C8—C9—C10	-90.04 (15)	C14—C15—N1—C1	179.66 (10)
C8—C9—C10—C11	46.24 (18)	C6—C1—N1—C15	-0.33 (18)
C9—C10—C11—C12	59.62 (18)	C2-C1-N1-C15	179.34 (11)

Fig. 2

